

H2 as a future fuel for CHP


H2 (Water) stof tot nadenken, 2021

INNIO Jenbacher GmbH & Co OG Jenbach, Austria www.innio.com

Dr. Klaus Payrhuber
June 21st, 2021

Pushing beyond the impossible and looking boldly toward tomorrow

INNIO* is...

- A leading technology provider of gas engines, power equipment, a digital platform, Headquartered in Jenbach, Austria, with additional primary and related services for power generation and gas compression at or near the point of use.
- Renowned for our proven Jenbacher* and Waukesha* product brands.
 - Gas engines from 200 to 10,400 kW
- Operations in Welland, Ontario, Canada, and Waukesha, Wisconsin, USA.

JENBACHER

All rights reserved H2 (Water) stof tot nadenken, 2021 *Indicates a trademark

Power generation – Delivering fuel flexibility, long service life, outstanding durability & reliability

Jenbacher* gas engine platforms

Jenbacher J920 FleXtra

- V20 cylinder; 1,000/900 rpm (50/60 Hz)
- Electrical output: 10.4 MWe (50 Hz),
 9.3 MWe (60 Hz)
- Electrical/total efficiency:

49.1/>90% (50 Hz), 49.9/>90% (60 Hz)

- · Fast start: 2-minute startup capability
- Delivered engines: ~40
- · Launch date: 2013

Jenbacher Type 6

- V12, V16, V20 cylinder; 1,500 rpm (50/60 Hz)
- V24 2-stage turbocharged
- Electrical output: 1.8 4.5 MWe (50 Hz)
- Electrical efficiency: up to 47%
- Fast start version: 45-sec (J620)
- Delivered engines: ~5,500
- Launch date: 1989 (J624 in 2007)

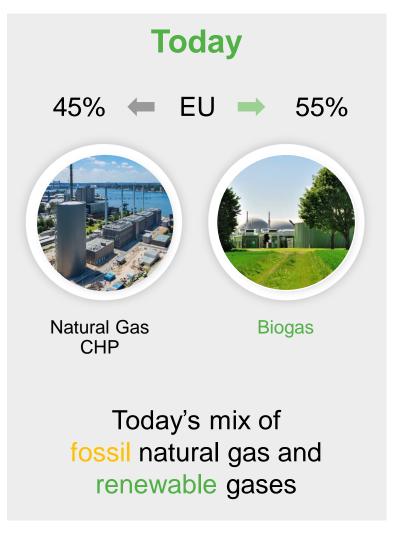
Jenbacher Type 4

- V12, V16 and V20 cylinder: 1,500/1,800 rpm (50/60 Hz)
- Electrical output: 0.8 – 1.5 MWe (50 Hz)
- Electrical efficiency: up to 44%
- Delivered engines: ~4,900
- Launch date: 2002

Jenbacher Type 3

- V12, V16, V20 cylinder; 1,500/1,800 rpm (50/60 Hz)
- Electrical output: 0.5 - 1 MWe (50 Hz)
- Electrical efficiency: up to 41.7%
- Delivered engines: ~10,100
- Launch date: 1988

Jenbacher Type 2



- L8 cylinder;
 1,500/1,800 rpm (50/60 Hz)
- Electrical output: 250 - 330 kWe (50 Hz)
- Electrical efficiency: 39.5%
- Delivered engines: ~1,200
- Launch date: 1976

All rights reserved H2 (Water) stof tot nadenken, 2021 *Indicates a trademark

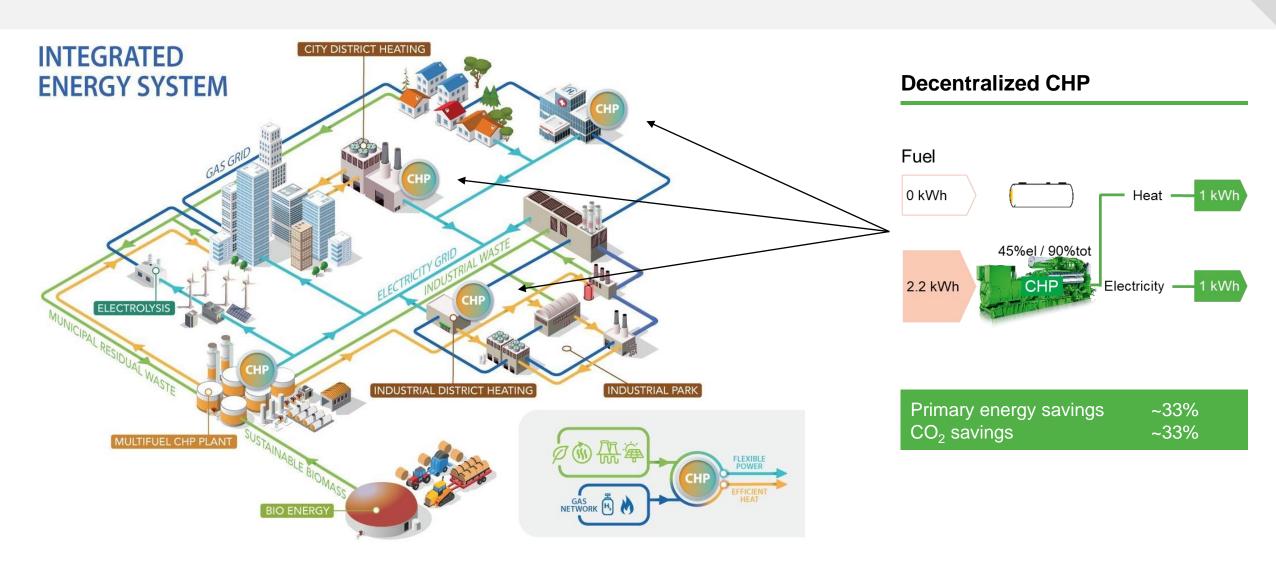
Transitioning to 100% Renewable fuels

Tomorrow

Biomethane or Synthetic Methane CHP

Biomethane & CO₂ usage or Hydrogen CHP

Hydrogen CHP



Biogas

Carbon neutral fuels & green hydrogen

Integrated energy system

H2 (Water) stof tot nadenken, 2021

Jenbacher gas engines with hydrogen operation

MW scale

Jenbacher's experience with Hydrogen & Hydrogen mixtures

Coke gas (Profusa) COD 1994

> H₂: ~50-70Vol% CH₄: ~20-25Vol% LHV: ~5 kWh/m³

Process gas (Krems) COD 1996

> H₂: ~15-17 Vol% CH₄: ~1.5 Vol% LHV: ~0.5 kWh/m³

Commercial operation

Syngas (Mutsu) COD 2003

H₂: ~30-40 Vol% CO: ~25-30 Vol% LHV: ~2.5 kWh/m³ Pure Hydrogen 2021+

H₂: ... 100 Vol% Nat. Gas or Inerts LHV: ~3 kWh/m³

Future

More than 250MW installed with syngas / process gases 90 projects in 28 countries and experience with all engine types

Jenbacher gas engine solutions for H₂

A

B

C

H₂ in natural gas pipeline

H₂ local admixing

Pure H₂

A-1: Low H₂ blending
Optimized for NG
<5%v H₂

A-2: Medium H₂ blending broadband product 5-20 (30)%v H₂

B-1: Special gas engine operational optimized up to ~60%v H₂

B-2: NG / H₂ engine dual gas engine 100%v NG / H₂ C: H₂ engine hydrogen engine (H₂) 100%v H₂

Conventional NG+H2 fuel mixture boosted system

H2 fuel injection system

no modifications required

existing versions available

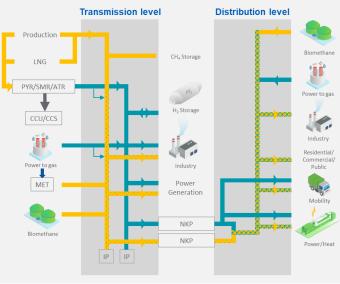
existing versions available

pilots available (pre-serial engines)

pilots available (pre-serial engines)

JENBACHER

H₂ mixed in pipeline natural gas (typically up to 20%vol)

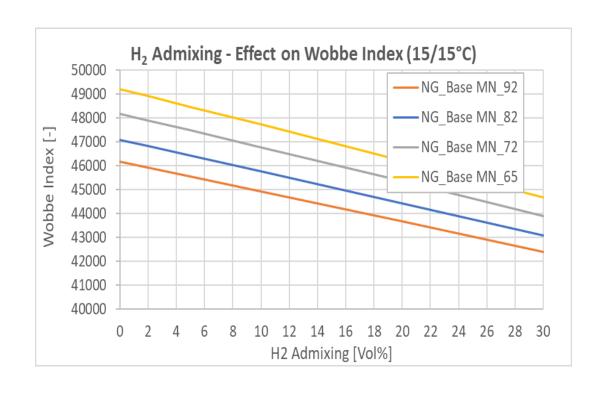


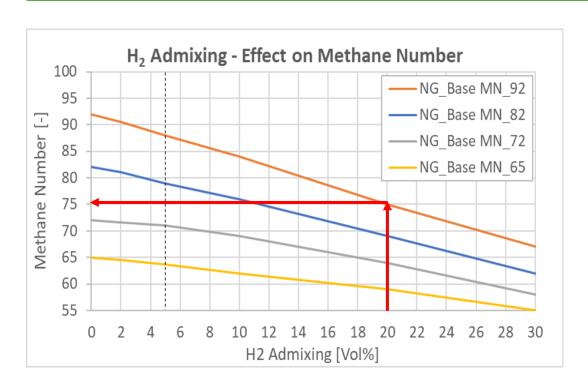
Important fuel properties to consider

- Heating Value
- Methane Number
- Laminar Flame Speed

	Characteristic	Limits	Unit
LHV	Fluctuation	≤ 4	%/min
MN	RoC	≤ 10	MN/min
H ₂ content in NG	RoC	≤ 4	Vol%/min
100% H ₂	H ₂ purity	not relevant	% H ₂

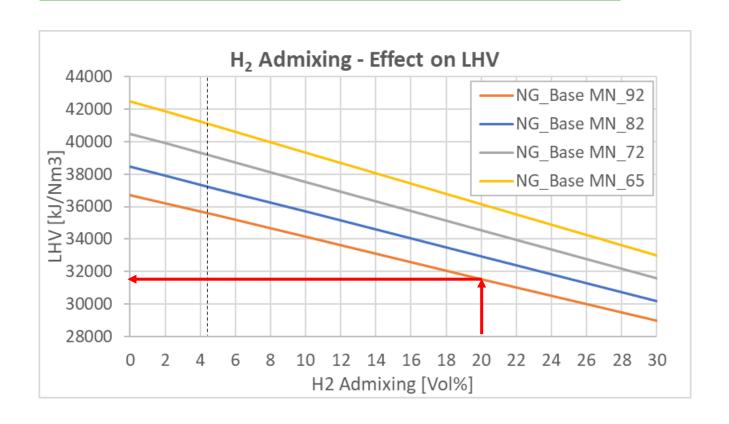
Mixture


		NG example	Hydrogen
CH4	Vol-%	97.6	0
C2H6	Vol-%	2	0
C3H8	Vol-%	0.4	0
H2	Vol-%	0	100
LHV	kJ/Nm³	36 730	10 800
WI	kJ/Nm³	48 704	41 000
MN	-	92	0
Laminar flame speed	cm/s	38	>300



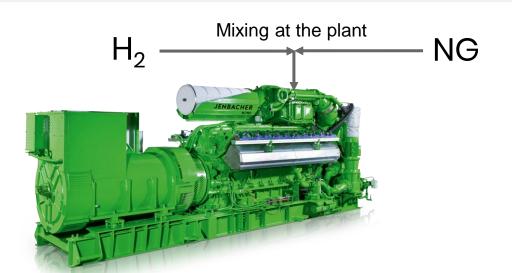
H2 Admixing-Effect on Wobbe Index

H2 Admixing-Effect on Methane Number


>5%(v) H₂ in pipeline gas ... we recommend a signal to gas engines about H₂ content

Hydrogen added to pipeline Natural Gas

H2 Admixing-Effect on LHV


>5%(v) H₂ in pipeline gas ... we recommend a signal to gas engines about H₂ content

H₂ local admixing to natural gas

		Hydrogen
CH4	Vol-%	0
C2H6	Vol-%	0
C3H8	Vol-%	0
H2	Vol-%	100
LHV	kJ/Nm³	10 800
WI	kJ/Nm³	41 000
MN	-	0
Laminar flame speed	cm/s	>300

Important fuel properties to consider

- Heating Value
- Methane Number
- Laminar Flame Speed
- ✓ H2 content to control system available

		NG example
CH4	Vol-%	97.6
C2H6	Vol-%	2
C3H8	Vol-%	0.4
H2	Vol-%	0
LHV	kJ/Nm³	36 730
WI	kJ/Nm³	48 704
MN	-	92
Laminar flame speed	cm/s	38
-		

H₂ local admixing demo projects

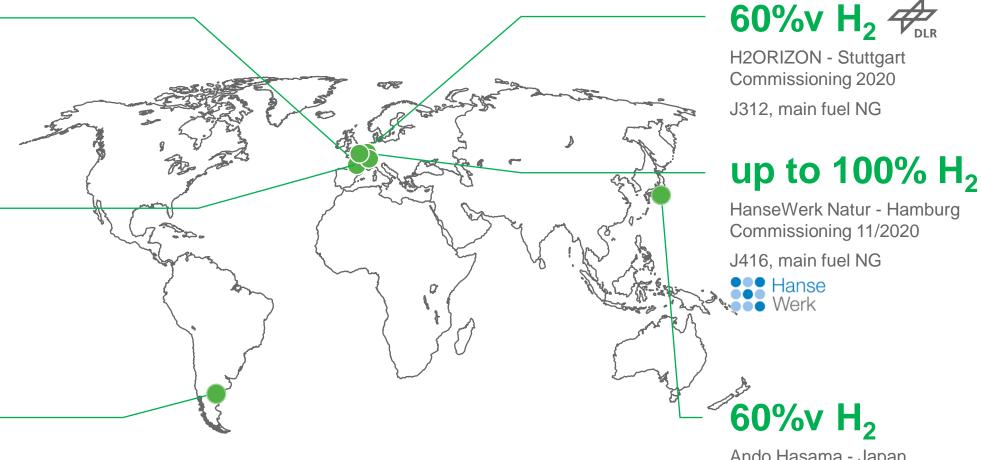
30%v H₂

Bozen - Italy 2017, Horizon 2020 Demo

J612, main fuel NG

30%v H₂

Biogas Stream- Austria 2008 Demo


J312, main fuel NG

42%v H₂

Hychico – Argentina Operating since 2008 J420, main fuel NG

A HYCHIC

JENBACHER

Ando Hasama - Japan Commissioning 01/2020

J312, main fuel NG

Hychico, Argentina site

Hychico, Diadema Wind Park and Hydrogen Plant, Chubut Province, Argentina

About the region:

Currently large oil & gas fields 2,000 GW wind power potential, compared to 600 GW global installations today Ideal place for exporting green $\rm H_2$ and e-fuels in the future

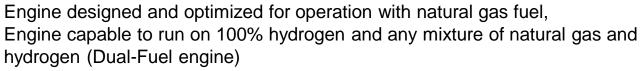
Green H₂ demo:

6.3 MW wind park with **54.9% CF (2017), avg. >50%** 0.8 MW of electrolyser (2 units), 120 Nm³/hr H₂ H₂ with high purity (99.998%), O₂ for local market Underground H₂ storage research

J420 converts H₂ back to power

Output 1,415 kW_{el}
Main Fuel: NG MN >90
Operation with **controlled H₂ blending**0-27 v% H₂ 1,415 kW
28-42 v% H₂ 1,415 to 1,180 kW

~70,000 oh since 2008


JENBACHER

First 100% Hydrogen pilot engine with ~1MW HanseWerk Natur (E.on), GER

J416 C202	J416 C202
Natural gas	Hydrogen
999 kWel	>600 kWel
~42%/~93.5%	40+%/~93%
-	~20 Vol%
-	100 Vol%
	Natural gas 999 kWel ~42%/~93.5%

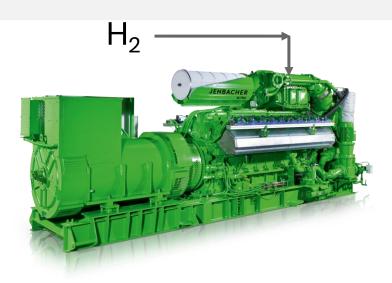
^{*} Controlled H₂ blending, base gas quality MN~80

- 100% NG as commercial fuel achieving max. total efficiency
- Up to 100% H₂ operation possible (H₂ as demonstration fuel)

Milestones

- ✓ Factory test successful in Aug., 2020
- ✓ Site demonstration in Nov. 2020
- PR about site demonstration by INNIO and E.ON in Q4, 2020

With hydrogen becoming a commercial fuel, INNIO Jenbacher will invest in optimizing gas engine performance



		Hydrogen
CH4	Vol-%	0
C2H6	Vol-%	0
C3H8	Vol-%	0
H2	Vol-%	100
LHV	kJ/Nm³	10 800
WI	kJ/Nm³	41 000
MN	-	0
Laminar flame speed	cm/s	>300

Important fuel properties to consider

- Heating Value
- Methane Number
- Laminar Flame Speed
- ✓ First 100% H2 demo in 2001

H2 engine offerings

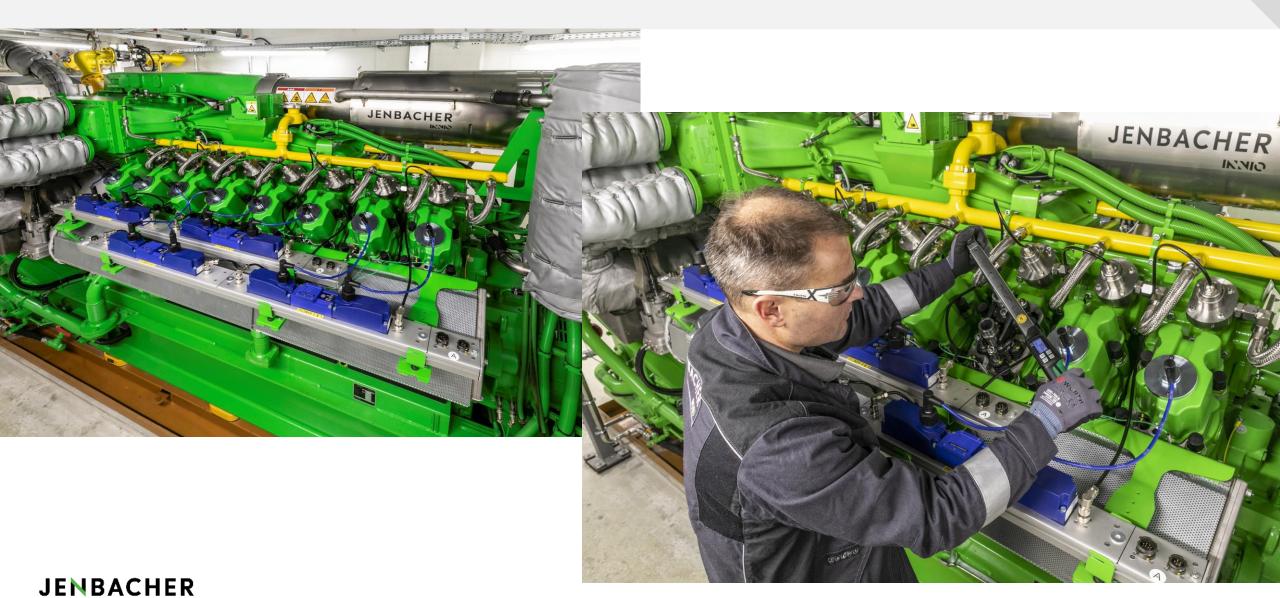
H2 engine – Type 4 – 50Hz (pre-serial engine)

H2: <100mg NOx @5%O2	J412-H2	J416-H2	J420-H2
Electrical Output (kW)	531	710	889
Thermal Output (kW)	630	838	1,049
Electrical Efficiency (%)	39.4	39.5	39.5
Total Efficiency (%)	86.1	86.1	86.2
H2 consumption (kg/h)	40	54	67
H2 consumption (Nm³/h)	450	599	749

Technology

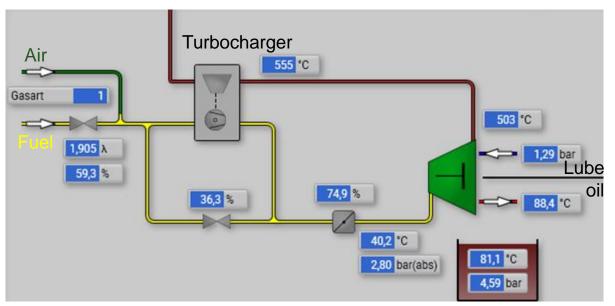
- Port injection (gas pressure 8+bar)
- Cylinder selective combustion control
- Wastegate for turbo charger

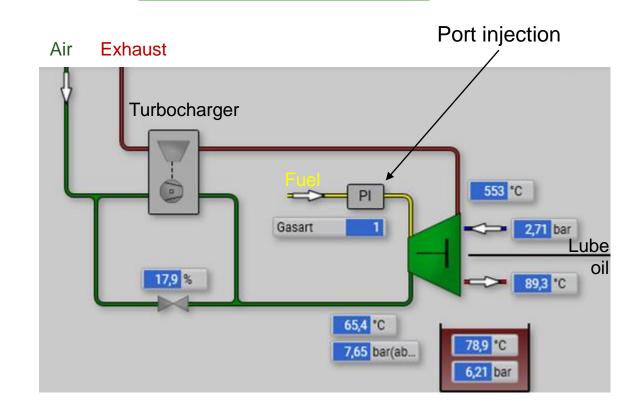
18


Best effort performance is about 10% higher in output

Alternatively, a "Dual Fuel Product" – 100% NG / 100% H2 – is available

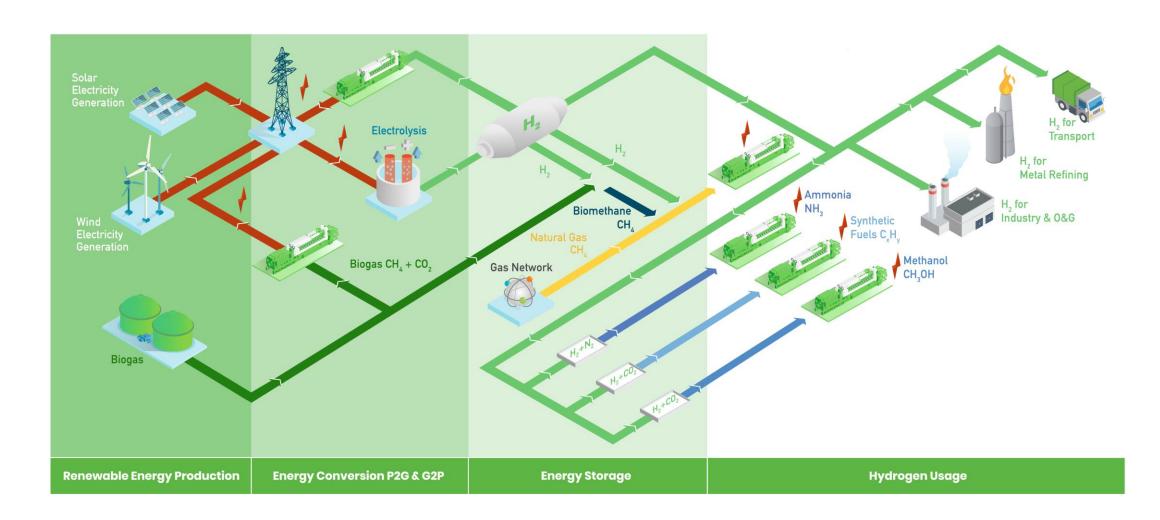
H2 engine – fuel supply system


IKNIQ


Main difference between a NG engine and a H2 engine

NG engine

Exhaust


H2 engine

Intercooler on both pictures is not shown

Future role of Jenbacher gas engines in a renewable world

All rights reserved H2 (Water) stof tot nadenken, 2021

21

THE HYDROGEN ECONOMY CAN BECOME A REALITY ACROSS ALL SECTORS – IF WE USE THE EXISTING INFRASTRUCTURE!

