

The Future of Crop Protection: data-driven precision IPM

from vision to execution

Karel Bolckmans

Chief Technology Officer

Patterns in (Greenhouse) Production

- High concentration of **buying power** in a small number of retailers (oligopsony)
- Shorter value chains ("cut out the middle man"): driven by cost and quality considerations
- * Retailers want to deal with as **few suppliers** as possible:
 - 1. Entire category
 - 2. All-year-round
 - 3. Always entire volume (reliability)
 - 4. Top quality: (1) cosmetic quality, (2) taste, (3) residue poor/free, (4) carbon neutral
 - 5. Best price
- Fewer but larger, multisite growers
 - Change of ownership structure: corporate farming
 - Increasing complexity and risk ightarrow data-driven growing
- ❖ Labour shortage, quality and cost → robotization

 \diamond Carbon footprint + Energy cost $\to \Delta$ climate management (e.g. closed greenhouse, vertical agriculture, ...)

"The Autonomous Greenhouse"

Data Is Transforming How Growers Operate

The grower's challenge: **continuously steering** the plants for maximum production through dynamic **climate management** (T, RH, [CO₂], light), **fertigation management** (irrigation, pH, EC, fertiliser mix, ...) and **crop management** (leaf picking, lowering plants, cluster pruning, ...) and all the **interactions** between them, while keeping **energy cost** and **labor cost** under control \rightarrow very complex interactions \Rightarrow **top sport** !!!

Today

- Visual inspection.
- Grower's experience.
- Input from a trusted advisor, such as a sales rep, who has access to otherwise inaccessible information and knowledge.
- Supplier product information.

ι the (very) near future

- ☐ Data-enabled decision making based on:
 - ✓ real-time data collection (sensors, camera's, computer vision, digitization, IoT, drones, autonomous vehicles, ...),
 - ✓ advanced data analytics, artificial intelligence, algorithms (descriptive, diagnostic, predictive and prescriptive analytics),
 - ✓ sharing of best practices via digital farming applications and platforms.
- \Box **Automated execution** of farm tasks \rightarrow robotization

Prevention

Host Plant Resistance

- ✓ Resistant Varieties
- ✓ Plant Defence System: SAR, ISR, vaccination, endophytes

Cultural Methods

- ✓ Soil Life
- ✓ Crop Rotation
- ✓ Cropping Systems

Semiochemicals

✓ Mating Disruption

Physical Control

✓ Exclusion (e.g. netting)

Biological Control

- ✓ Conservation Biocontrol
- ✓ Seasonal Inoculative BC (Predator-in-first)

Scouting

Data Collection

- √ Human Eye
- ✓ Sensors & Camera's

Decision Support Systems

- ✓ Descriptive Analytics
- ✓ Diagnostic Analytics
- ✓ Predictive Analytics
- ✓ Prescriptive Analytics

Integrated Pest & Disease Management

Intervention

Physical Control

- ✓ Trapping (color, light, pheromone)
- ✓ Clipping, Roughing
- ✓ UVc

Biological Control

- ✓ Inundative Releases
- √ Biopesticides
- ✓ Sterile Male Technique

Chemical Control

- ✓ Only as a last resort!
- ✓ Selective Pesticides
- ✓ Precision Application
- ✓ Pesticide Resistance Mngt.
- ✓ Residue Management

Providing IPM Advice

Challenges & Opportunities

Detecting - Identifying - Quantifying - Mapping

- 1. Scouting labour
- 2. Timely detection
- 3. Data quality

Decision Support

Analysing - Learning - Deciding

- 1. Access to greenhouses:
 - ✓ PepMV, ToBrRFV,
 - ✓ Covid-19
 - ✓ remote areas
- 2. Confidence & Decision quality
- 3. Training new IPM technicians
- 4. Efficiency

Action

Applying – Recording

- 1. Application labour
- 2. Spot treatments
- 3. Crop Protection Cost

Data-driven Precision IPM WHAT?

- 1. Data collection & recording (identity, location, severity of diseases, pest & beneficials)
 - 1) Human eye
 - a) Mobile Scouting App → Biobest/Ecoation CropScanner 2.0
 - b) Vehicle Mounted → Ecoation OKO
 - 2) Sensors and Camera's (RGB, thermal, hyper/multi-spectral, ...)
 - a) Direct observation of pests (vision, image recognition, wing beat, e-nose)
 - a) On plants (underside leaves)
 - b) In flight \rightarrow PATS-C
 - b) Indirect observation: plant stress (2-step approach) → Ecoation Plant Health Sensor
 - c) Trap Counts (vision, image recognition) \rightarrow Trap-Scanner, Trap-Eye (PATS)
 - 3) High-resolution climate sensors (T, RH, [CO2], light intensity, ...) \rightarrow Ecoation OKO
 - ⇒ Autonomous Vehicles → Bogaerts Greenhouse Logistics
- 2. Decision Support
- 3. Action

2-step approach for Crop Observations

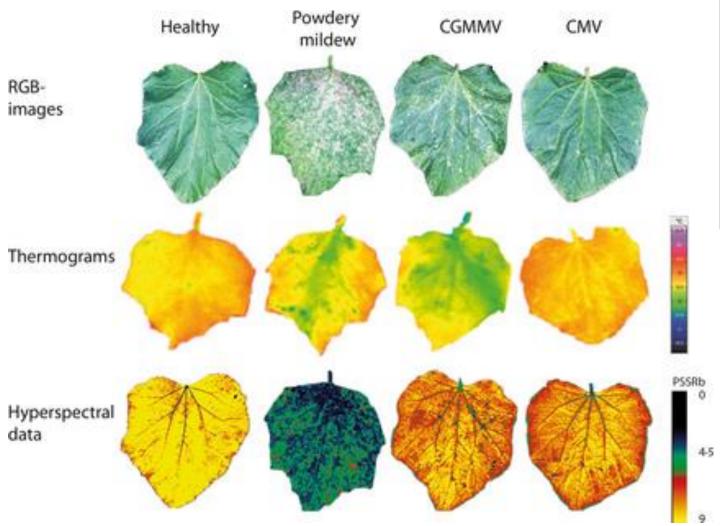
No information about beneficials!

Entire Plant Population

Plant Stress Sensors

1. Detecting & Mapping

Visual Observation and Scouting App


HR Camera
Image Recognition

2. Identifying & Quantifying

Sampling part of the Entire Plant Population

Including information about beneficials

Beyond the visible

Ecoation Light Probes

Powdery mildew—

Powdery mildew—

Rust

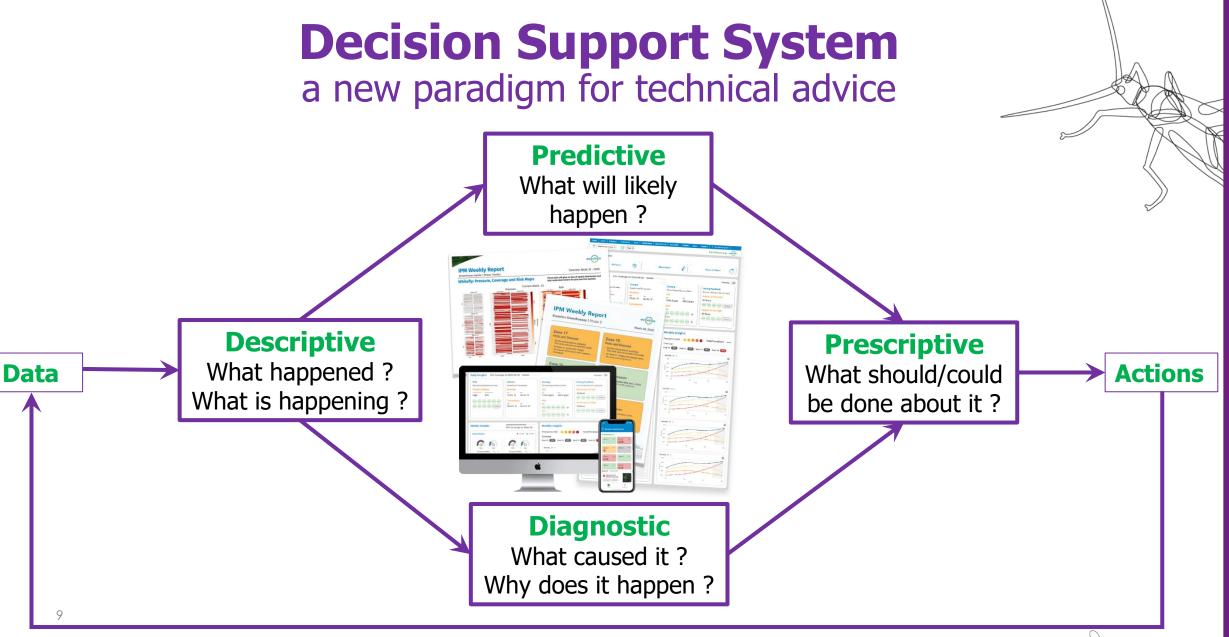
Leaf spot

Leaf spot

Leaf spot

Leaf spot

Leaf spot


Rust

Ru

C. A. Berdugo, R. Zito, S. Paulus, and A.-K. Mahlein, "Fusion of sensor data for the detection and differentiation of plant diseases in cucumber,"

Plant Health Sensor

Data-driven Precision IPM WHAT?

- beneficials)
- 1. Data collection & recording (identity, location, severity of pest & beneficials)
- 2. Decision Support (DSS)
- 3. Action
 - 1) Broadcast and/or Precision Application ("spot treatments") of:
 - 1) Beneficial Insects & Mites
 - 2) Biopesticides
 - 3) Selective Chemical Pesticides
 - 2) UVc robot
 - ⇒ Autonomous Vehicles

Data-driven Precision IPM WHY?

- 1. Reduce production costs (labor cost+ availability of skilled labour)
 - 1) Scouting labour (2-step approach)
 - 2) (Precision) application of beneficials and (bio)pesticides
 - 3) Crop Protection Costs
- 2. <u>Maximize crop yield and quality</u> (Precision IPM)
 - 1) Even better IPM advice with less risk (PepMV, ToBrFV, ...) through remote advice
 - 2) Less negative impact from pests and diseases on crop yield and quality
 - a) Earlier detection, allowing earlier intervention
 - b) Optimal (precision) interventions (DSS) (product, rate, timing, frequency, location)
 - 3) Less negative impact from pesticide treatments on crop yield \rightarrow confidence through data!
 - 4) Better oversight, task management and control of work quality (large, multisite operations)
 - 5) Reduce/Eliminate pesticide residues (residue-free)
 - a) Meet legal and extra-legal requirements ('license to supply')
 - b) Ultimately provide residue-free produce

Thank you!

