AI at Work Promises and Myths

Frank Thuijsman

UM

f.thuijsman@maastrichtuniversity.nl

Who are we?

Maastricht University

Faculty of Science and Engineering

Department of Advanced Computing Sciences

My background

- 1958: born in Arnhem
- 1977/1985: Mathematics, Nijmegen
- 1985/1989: PhD Game Theory, Maastricht
- 1989/1990: visiting positions at UCLA and Hebrew Univ. of Jerusalem
- 1990/present: Maastricht University
- Many years as director of studies
- 2014: initiated KE@Work
- 2014/2023: coordinated KE@Work
- 2016/present: full professor
- 2023/present: secretary and treasurer of the (international) Game Theory Society

DACS background

- 1987: two new UM departments Mathematics and Computer Science
- 1992: launch of "doctoraal" programme

 Knowledge Engineering
 that led to current programmes:
 BSc Data Science and AI
 - MSC AI
 - MSC Data Science for Decision Making
- 2005/2008: departments fully merged
- 2014 start: of KE@Work
- 2023 start: of Computer Science
- 2025 start: of CS@Work

Some highlights

- 1912: born in London
- 1931/1936: Mathematics, Cambridge
- 1936: Publishes "computable numbers"
- 1938: PhD Princeton
- 1939/1945: Bletchley Park, cracks Enigma code
- 1950: Publishes "computing machinery"
- 1952: convicted on indecent behavior
- 1954: dies in Wilmslow

1936 paper

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING.

[Received 28 May, 1936.-Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real numbers whose expressions as a decimal are calculable by finite means.

Turing Machine

- 1. Input: infinite squared tape
- 2. Finitely many non-empty
- 3. Finitely many symbols
- 4. Operator can read, write, go L, go R, one by one
- 5. Operator has finite manual on what to do, consisting of finitely many "states"

Turing Machine: x + y

Turing Machine: x · y

1936 paper

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING.

[Received 28 May, 1936.-Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real numbers whose expressions as a decimal are calculable by finite means.

It is possible to invent a single machine which can be used to compute any computable sequence. If this machine \mathfrak{N} is supplied with a tape on the beginning of which is written the S.D of some computing machine \mathcal{M} ,

The Universal Machine HEAD TAPE Code number of a Turing machine ${\cal M}$ Input to ${\mathcal M}$ Output

U

M

	Scanned symbol Print Sk, Erase	Table of U	Current state :A			Current state :B			Current state :V		
ł			Write symbol	Move tape R	Next state	Write symbol	Move tape R	Next state	 Write symbol p	Nove tape R	Next state M
	Leit, Kight	tape symbol is 0 tape symbol is 1	1 X	R	B C		LR	к н	 1 X	LN	N O
		tape symbol is X tape symbol is T	1	L L	D E	E 1	N R	U 5	 0 Y	R R	р Н
	Control unit	etc.	-								

2014 movie

Alan Turing - late thirties - John von Neumann

John von Neumann

John Nash

- late forties -

Lloyd Shapley

2001 movie

John Nash

Lloyd Shapley

2001 movie

Game Theory

2012

Lloyd Shapley

1950 paper MIND A QUARTERLY REVIEW OF PSYCHOLOGY AND PHILOSOPHY

I.—COMPUTING MACHINERY AND INTELLIGENCE

BY A. M. TURING

1 The Imitation Game.

I PROPOSE to consider the question, 'Can machines think ?' This should begin with definitions of the meaning of the terms 'machine' and 'think'. The definitions might be framed so as to

Turing Test

Turing Test

2014 movie

Turing Test

Completely Automated Public Turing test to tell Computers and Humans Apart

What can YOU do to know more about AI?

Watch this 2017 Google DeepMind documentary Full movie is freely available on YouTube: <u>https://www.youtube.com/watch?v=WXuK6gekU1Y</u>

What can WE do for you?

Create insights from data

Learn from customer behaviour, informed decision-making, predict outcomes

Automate and support

Optimize complex processes

What can WE do for you?

Create insights from data

Automate and support

Harness the power of artificial intelligence and

robotics

Optimize complex processes

What can WE do for you?

Create insights from data

Automate and support

Optimize production and logistic processes for the

Optimize complex processes

We participate in H2020 projects

Leading: CoRoSect – Automating insect farms

- AI and robotics to allow scaling up of insect farming
- Our focus:
 - Robotic actionsplanning and control
 - Cognitive robots and smart mechatronics
 - > Human-robot collaboration

We participate in H2020 projects

AI for healthcare: ICT4Life

 AI alerts the doctor if a patient with dementia needs urgent attention
 Based on different data sources, e.g. live video and wearable

sensors

DACS Research Themes

- Data Science
- Systems and Control
- Algorithms
- Cognitive Systems
- Explainable Artificial Intelligence
- Games
- Quantum & High-Performance Computing
- Computing Sciences Education
- Health and AI

DACS Full Professors

- Mathematical Aspects of Knowledge Engineering
- Al and Computer Science
- Strategic Optimization and Data Science
- Machine Reasoning
- Data Science
- Data Fusion and Intelligent Interaction
- Explainable Artificial Intelligence
- Computational Social Sciences
- Text-Mining
- e-Infrastructure
- Application of Emerging Technologies

Student projects

- Academic bachelor or master level
- Internships, theses or projects
- KE@Work and our new CS@Work

Government co-funded research

Consulting & contract research

Student projects

PhD and PostDoc projects through public-private partnerships like H2020

Government co-funded research

Consulting & contract research

Student projects

Government co-funded research

Highly flexible:

- From advice to complete project
- Short or long term

Consulting & contract research

Contract or co-funded research: ICAI and ELSA Labs

Innovation Center for Artificial Intelligence

ELSA

Ethical, Legal and Societal Aspects

- National ecosystem
- Topical labs around 5 PhD students
- Increase AI knowledge dissemination
- Locally retain international AI talent

Student projects: KE@Work

- Top 25% of our bachelor's students
- 2 years, half-time at your organization
- Al, Data Science or Optimization challenge
- Academic co-supervision

201 contracts with 70+ partner organizations

KNOWLEDGE

Department of Advanced Computing Sciences

About KE@Work

- Part of DACS Honours programme for years 2 and 3 of Bachelor Data Science & Al
- Only for excellent and highly motivated students (GPA at least 7.5)
- Students work on Data Science & AI challenge at regional companies and organizations
- This is done at a 50-50 base for 2 to 5 days per week, except from exam weeks
- Quality control by academic and company supervisors
- 3-party internship contract for 23 months
- Student gets € 550/month 1^{rst} year, € 600/month 2nd year
- DACS gets € 375/month/student for individual supervision

CS@Work 1-year programme on software engineering

To summarize

- Maastricht University
 Department of Advanced Computing Sciences
- We combine artificial intelligence, data science, computer science, robotics and mathematics
- 30+ years of experience
- Open to collaborate

Ready to join? Just reach out!

Frank Thuijsman f.thuijsman@maastrichtuniversity.nl 0 6361 6661 0

Paul-Henri Spaaklaan 1 6229 EN Maastricht

Learn more about us at www.maastrichtuniversity.nl/dacs

Ready to join? Just reach out!

Frank Thuijsman f.thuijsman@maastrichtuniversity.nl 0 6361 6661 0

Paul-Henri Spaaklaan 1 6229 EN Maastricht

Learn more about us at www.maastrichtuniversity.nl/dacs

